3.5.74 \(\int \frac {1}{(a+b \cos (c+d x))^3} \, dx\) [474]

Optimal. Leaf size=133 \[ \frac {\left (2 a^2+b^2\right ) \text {ArcTan}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{5/2} (a+b)^{5/2} d}-\frac {b \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {3 a b \sin (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))} \]

[Out]

(2*a^2+b^2)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/(a-b)^(5/2)/(a+b)^(5/2)/d-1/2*b*sin(d*x+c)/(a^2
-b^2)/d/(a+b*cos(d*x+c))^2-3/2*a*b*sin(d*x+c)/(a^2-b^2)^2/d/(a+b*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 133, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {2743, 2833, 12, 2738, 211} \begin {gather*} \frac {\left (2 a^2+b^2\right ) \text {ArcTan}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{d (a-b)^{5/2} (a+b)^{5/2}}-\frac {3 a b \sin (c+d x)}{2 d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}-\frac {b \sin (c+d x)}{2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^(-3),x]

[Out]

((2*a^2 + b^2)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(5/2)*(a + b)^(5/2)*d) - (b*Sin[c
+ d*x])/(2*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) - (3*a*b*Sin[c + d*x])/(2*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x]
))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2738

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[2*(e/d), Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2743

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((a + b*Sin[c + d*x])^(n
+ 1)/(d*(n + 1)*(a^2 - b^2))), x] + Dist[1/((n + 1)*(a^2 - b^2)), Int[(a + b*Sin[c + d*x])^(n + 1)*Simp[a*(n +
 1) - b*(n + 2)*Sin[c + d*x], x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && Integ
erQ[2*n]

Rule 2833

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(
b*c - a*d))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(a^2 - b
^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + 2)*Sin[e + f*x], x], x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {1}{(a+b \cos (c+d x))^3} \, dx &=-\frac {b \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {\int \frac {-2 a+b \cos (c+d x)}{(a+b \cos (c+d x))^2} \, dx}{2 \left (a^2-b^2\right )}\\ &=-\frac {b \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {3 a b \sin (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac {\int \frac {2 a^2+b^2}{a+b \cos (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2}\\ &=-\frac {b \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {3 a b \sin (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac {\left (2 a^2+b^2\right ) \int \frac {1}{a+b \cos (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2}\\ &=-\frac {b \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {3 a b \sin (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac {\left (2 a^2+b^2\right ) \text {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right )^2 d}\\ &=\frac {\left (2 a^2+b^2\right ) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{5/2} (a+b)^{5/2} d}-\frac {b \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {3 a b \sin (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.42, size = 113, normalized size = 0.85 \begin {gather*} \frac {-\frac {2 \left (2 a^2+b^2\right ) \tanh ^{-1}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\left (-a^2+b^2\right )^{5/2}}+\frac {b \left (-4 a^2+b^2-3 a b \cos (c+d x)\right ) \sin (c+d x)}{(a-b)^2 (a+b)^2 (a+b \cos (c+d x))^2}}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^(-3),x]

[Out]

((-2*(2*a^2 + b^2)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(5/2) + (b*(-4*a^2 + b^2
 - 3*a*b*Cos[c + d*x])*Sin[c + d*x])/((a - b)^2*(a + b)^2*(a + b*Cos[c + d*x])^2))/(2*d)

________________________________________________________________________________________

Maple [A]
time = 0.23, size = 182, normalized size = 1.37

method result size
derivativedivides \(\frac {\frac {-\frac {\left (4 a +b \right ) b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\left (a -b \right ) \left (a^{2}+2 a b +b^{2}\right )}-\frac {\left (4 a -b \right ) b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a +b \right ) \left (a^{2}-2 a b +b^{2}\right )}}{\left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-b \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b \right )^{2}}+\frac {\left (2 a^{2}+b^{2}\right ) \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}}{d}\) \(182\)
default \(\frac {\frac {-\frac {\left (4 a +b \right ) b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\left (a -b \right ) \left (a^{2}+2 a b +b^{2}\right )}-\frac {\left (4 a -b \right ) b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a +b \right ) \left (a^{2}-2 a b +b^{2}\right )}}{\left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-b \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b \right )^{2}}+\frac {\left (2 a^{2}+b^{2}\right ) \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}}{d}\) \(182\)
risch \(-\frac {i \left (2 a^{2} b \,{\mathrm e}^{3 i \left (d x +c \right )}+b^{3} {\mathrm e}^{3 i \left (d x +c \right )}+6 a^{3} {\mathrm e}^{2 i \left (d x +c \right )}+3 a \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}+10 a^{2} b \,{\mathrm e}^{i \left (d x +c \right )}-b^{3} {\mathrm e}^{i \left (d x +c \right )}+3 b^{2} a \right )}{\left (a^{2}-b^{2}\right )^{2} d \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+2 a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )^{2}}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) b^{2}}{2 \sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) b^{2}}{2 \sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d}\) \(474\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*cos(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(2*(-1/2*(4*a+b)*b/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3-1/2*(4*a-b)*b/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*
d*x+1/2*c))/(a*tan(1/2*d*x+1/2*c)^2-b*tan(1/2*d*x+1/2*c)^2+a+b)^2+(2*a^2+b^2)/(a^4-2*a^2*b^2+b^4)/((a-b)*(a+b)
)^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more de

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 258 vs. \(2 (120) = 240\).
time = 0.48, size = 585, normalized size = 4.40 \begin {gather*} \left [-\frac {{\left (2 \, a^{4} + a^{2} b^{2} + {\left (2 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (2 \, a^{3} b + a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) + 2 \, {\left (4 \, a^{4} b - 5 \, a^{2} b^{3} + b^{5} + 3 \, {\left (a^{3} b^{2} - a b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \, {\left ({\left (a^{6} b^{2} - 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} - b^{8}\right )} d \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{7} b - 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} - a b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{8} - 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} - a^{2} b^{6}\right )} d\right )}}, \frac {{\left (2 \, a^{4} + a^{2} b^{2} + {\left (2 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (2 \, a^{3} b + a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) - {\left (4 \, a^{4} b - 5 \, a^{2} b^{3} + b^{5} + 3 \, {\left (a^{3} b^{2} - a b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{6} b^{2} - 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} - b^{8}\right )} d \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{7} b - 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} - a b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{8} - 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} - a^{2} b^{6}\right )} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

[-1/4*((2*a^4 + a^2*b^2 + (2*a^2*b^2 + b^4)*cos(d*x + c)^2 + 2*(2*a^3*b + a*b^3)*cos(d*x + c))*sqrt(-a^2 + b^2
)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 + 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c
) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) + 2*(4*a^4*b - 5*a^2*b^3 + b^5 + 3*(a^3*b^2
- a*b^4)*cos(d*x + c))*sin(d*x + c))/((a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d*cos(d*x + c)^2 + 2*(a^7*b - 3*
a^5*b^3 + 3*a^3*b^5 - a*b^7)*d*cos(d*x + c) + (a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d), 1/2*((2*a^4 + a^2*b^
2 + (2*a^2*b^2 + b^4)*cos(d*x + c)^2 + 2*(2*a^3*b + a*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x +
c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) - (4*a^4*b - 5*a^2*b^3 + b^5 + 3*(a^3*b^2 - a*b^4)*cos(d*x + c))*sin(d
*x + c))/((a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d*cos(d*x + c)^2 + 2*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a*b^7)
*d*cos(d*x + c) + (a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 251 vs. \(2 (120) = 240\).
time = 0.43, size = 251, normalized size = 1.89 \begin {gather*} -\frac {\frac {{\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )} {\left (2 \, a^{2} + b^{2}\right )}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} - b^{2}}} + \frac {4 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 3 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 4 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )}^{2}}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

-((pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c)
)/sqrt(a^2 - b^2)))*(2*a^2 + b^2)/((a^4 - 2*a^2*b^2 + b^4)*sqrt(a^2 - b^2)) + (4*a^2*b*tan(1/2*d*x + 1/2*c)^3
- 3*a*b^2*tan(1/2*d*x + 1/2*c)^3 - b^3*tan(1/2*d*x + 1/2*c)^3 + 4*a^2*b*tan(1/2*d*x + 1/2*c) + 3*a*b^2*tan(1/2
*d*x + 1/2*c) - b^3*tan(1/2*d*x + 1/2*c))/((a^4 - 2*a^2*b^2 + b^4)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x +
 1/2*c)^2 + a + b)^2))/d

________________________________________________________________________________________

Mupad [B]
time = 2.88, size = 203, normalized size = 1.53 \begin {gather*} \frac {\mathrm {atan}\left (\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (2\,a-2\,b\right )\,\left (a^2-2\,a\,b+b^2\right )}{2\,\sqrt {a+b}\,{\left (a-b\right )}^{5/2}}\right )\,\left (2\,a^2+b^2\right )}{d\,{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}}-\frac {\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (b^2+4\,a\,b\right )}{{\left (a+b\right )}^2\,\left (a-b\right )}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (4\,a\,b-b^2\right )}{\left (a+b\right )\,\left (a^2-2\,a\,b+b^2\right )}}{d\,\left (2\,a\,b+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (2\,a^2-2\,b^2\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (a^2-2\,a\,b+b^2\right )+a^2+b^2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*cos(c + d*x))^3,x)

[Out]

(atan((tan(c/2 + (d*x)/2)*(2*a - 2*b)*(a^2 - 2*a*b + b^2))/(2*(a + b)^(1/2)*(a - b)^(5/2)))*(2*a^2 + b^2))/(d*
(a + b)^(5/2)*(a - b)^(5/2)) - ((tan(c/2 + (d*x)/2)^3*(4*a*b + b^2))/((a + b)^2*(a - b)) + (tan(c/2 + (d*x)/2)
*(4*a*b - b^2))/((a + b)*(a^2 - 2*a*b + b^2)))/(d*(2*a*b + tan(c/2 + (d*x)/2)^2*(2*a^2 - 2*b^2) + tan(c/2 + (d
*x)/2)^4*(a^2 - 2*a*b + b^2) + a^2 + b^2))

________________________________________________________________________________________